例如:"lncRNA", "apoptosis", "WRKY"

Structural basis of TRPV5 channel inhibition by econazole revealed by cryo-EM.

Nat Struct Mol Biol. 2018 Jan;25(1):53-60. Epub 2018 Jan 01
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The transient receptor potential vanilloid 5 (TRPV5) channel is a member of the transient receptor potential (TRP) channel family, which is highly selective for Ca2+, that is present primarily at the apical membrane of distal tubule epithelial cells in the kidney and plays a key role in Ca2+ reabsorption. Here we present the structure of the full-length rabbit TRPV5 channel as determined using cryo-EM in complex with its inhibitor econazole. This structure reveals that econazole resides in a hydrophobic pocket analogous to that occupied by phosphatidylinositides and vanilloids in TRPV1, thus suggesting conserved mechanisms for ligand recognition and lipid binding among TRPV channels. The econazole-bound TRPV5 structure adopts a closed conformation with a distinct lower gate that occludes Ca2+ permeation through the channel. Structural comparisons between TRPV5 and other TRPV channels, complemented with molecular dynamics (MD) simulations of the econazole-bound TRPV5 structure, allowed us to gain mechanistic insight into TRPV5 channel inhibition by small molecules.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读