[No authors listed]
Access to chromatin for processes such as transcription and DNA repair requires the sliding of nucleosomes along DNA. This process is aided by chromatin-remodeling complexes, such as the multisubunit INO80 chromatin-remodeling complex. Here we present cryo-EM structures of the active core complex of human INO80 at 9.6âà , with portions at 4.1-à resolution, and reconstructions of combinations of subunits. Together, these structures reveal the architecture of the INO80 complex, including Ino80 and actin-related proteins, which is assembled around a single RUVBL1 (Tip49a) and RUVBL2 (Tip49b) AAA+ heterohexamer. An unusual spoked-wheel structural domain of the Ino80 subunit is engulfed by this heterohexamer; both, in combination, form the core of the complex. We also identify a cleft in RUVBL1 and RUVBL2, which forms a major interaction site for partner proteins and probably communicates these interactions to its nucleotide-binding sites.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |