例如:"lncRNA", "apoptosis", "WRKY"

Wild type Kirsten rat sarcoma is a novel microRNA-622-regulated therapeutic target for hepatocellular carcinoma and contributes to sorafenib resistance.

Gut. 2018 Jul;67(7):1328-1341. Epub 2017 Dec 23
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


OBJECTIVE:Sorafenib is the only effective therapy for advanced hepatocellular carcinoma (HCC). Combinatory approaches targeting mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)- and phosphatidylinositol-4,5-bisphosphate-3-kinase (PI3K)/protein-kinase B(AKT) signalling yield major therapeutic improvements. RAS proteins regulate both RAF/MAPK and PI3K/AKT signalling. However, the most important RAS isoform in carcinogenesis, Kirsten rat sarcoma (KRAS), remains unexplored in HCC. DESIGN:Human HCC tissues and cell lines were used for expression and functional analysis. Sorafenib-resistant HCC cells were newly generated. RNA interference and the novel small molecule deltarasin were used for KRAS inhibition both in vitro and in a murine syngeneic orthotopic HCC model. RESULTS:Expression of wild type KRAS messenger RNA and protein was increased in HCC and correlated with extracellular-signal regulated kinase (ERK) activation, proliferation rate, advanced tumour size and poor patient survival. Bioinformatic analysis and reporter assays revealed that KRAS is a direct target of microRNA-622. This microRNA was downregulated in HCC, and functional analysis demonstrated that KRAS-suppression is the major mediator of its inhibitory effect on HCC proliferation. KRAS inhibition markedly suppressed RAF/ERK and PI3K/AKT signalling and proliferation and enhanced apoptosis of HCC cells in vitro and in vivo. Combinatory KRAS inhibition and sorafenib treatment revealed synergistic antitumorigenic effects in HCC. Sorafenib-resistant HCC cells showed elevated KRAS expression, and KRAS inhibition resensitised sorafenib-resistant cells to suppression of proliferation and induction of apoptosis. CONCLUSIONS:KRAS is dysregulated in HCC by loss of tumour-suppressive microRNA-622, contributing to tumour progression, sorafenib sensitivity and resistance. KRAS inhibition alone or in combination with sorafenib appears as novel promising therapeutic strategy for HCC.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读