例如:"lncRNA", "apoptosis", "WRKY"

miR-144/451 represses the LKB1/AMPK/mTOR pathway to promote red cell precursor survival during recovery from acute anemia.

Haematologica. 2018 Mar;103(3):406-416. Epub 2017 Dec 21
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The microRNAs miR-144 and -451 are encoded by a bicistronic gene that is strongly induced during red blood cell formation (erythropoiesis). Ablation of the miR-144/451 gene in mice causes mild anemia under baseline conditions. Here we show that miR-144/451-/- erythroblasts exhibit increased apoptosis during recovery from acute anemia. Mechanistically, miR-144/451 depletion increases the expression of the miR-451 target mRNA Cab39, which encodes a co-factor for the serine-threonine kinase LKB1. During erythropoietic stress, miR-144/451-/- erythroblasts exhibit abnormally increased Cab39 protein, which activates LKB1 and its downstream AMPK/mTOR effector pathway. Suppression of this pathway via drugs or shRNAs enhances survival of the mutant erythroblasts. Thus, miR-144/451 facilitates recovery from acute anemia by repressing Cab39/AMPK/mTOR. Our findings suggest that miR-144/451 is a key protector of erythroblasts during pathological states associated with dramatically increased erythropoietic demand, including acute blood loss and hemolytic anemia. Copyright© 2018 Ferrata Storti Foundation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读