例如:"lncRNA", "apoptosis", "WRKY"

BAH1 an E3 Ligase from Arabidopsis thaliana Stabilizes Heat Shock Factor σ32 of Escherichia coli by Interacting with DnaK/DnaJ Chaperone Team.

Curr. Microbiol.2018 Apr;75(4):450-455. Epub 2017 Dec 20
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In Escherichia coli, the DnaK/DnaJ chaperone can control the stability and activity of σ32, which is the key factor in heat shock response. Heterologous expression of eukaryotic molecular chaperones protects E. coli from heat stress. Here, we show that BAH1, an E3 ligase from plant that has a similar zinc finger domain to DnaJ, can perform block the effect of DnaK on σ32 in Escherichia coli. By constructing a chimeric DnaJ protein, with the J-domain of DnaJ fused to BAH1, we found BAH1 could partially compensate for the DnaJ' zinc finger domain in vivo, and that it was dependent on the zinc finger domain of BAH1. Furthermore, BAH1 could interact with both σ32 and DnaK to increase the level of HSPs, such as GroEL, DnaK, and σ32. These results suggested that the zinc finger domain was conserved during evolution.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读