例如:"lncRNA", "apoptosis", "WRKY"

She1 affects dynein through direct interactions with the microtubule and the dynein microtubule-binding domain.

Nat Commun. 2017 Dec 15;8(1):2151
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Cytoplasmic dynein is an enormous minus end-directed microtubule motor. Rather than existing as bare tracks, microtubules are bound by numerous microtubule-associated proteins (MAPs) that have the capacity to affect various cellular functions, including motor-mediated transport. One such MAP is She1, a dynein effector that polarizes dynein-mediated spindle movements in budding yeast. Here, we characterize the molecular basis by which She1 affects dynein, providing the first such insight into which a MAP can modulate motor motility. We find that She1 affects the ATPase rate, microtubule-binding affinity, and stepping behavior of dynein, and that microtubule binding by She1 is required for its effects on dynein motility. Moreover, we find that She1 directly contacts the microtubule-binding domain of dynein, and that their interaction is sensitive to the nucleotide-bound state of the motor. Our data support a model in which simultaneous interactions between the microtubule and dynein enables She1 to directly affect dynein motility.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读