例如:"lncRNA", "apoptosis", "WRKY"

Identification of cytochrome b5 CYTB-5.1 and CYTB-5.2 in C. elegans; evidence for differential regulation of SCD.

Biochim. Biophys. Acta. 2018 Mar;1863(3):235-246. Epub 2017 Dec 10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Unsaturated fatty acids (UFAs) play crucial roles in living organisms regarding development, energy metabolism, stress resistance, etc. The biosynthesis of UFAs starts from the introduction of the first double bond by stearoyl-CoA desaturase (SCD), converting saturated fatty acids (SFAs) to monounsaturated fatty acids (MUFAs). This desaturation is considered to be an aerobic process that requires cytochrome b5 reductase, cytochrome b5 and SCD. However, this enzyme system remains elusive in Caenorhabditis elegans. Here, we show that inactivation by knockdown or mutation (gk442189) of putative cytochrome b5 genes cytb-5.1 led to reduced conversion of C18:0 to C18:1(n-9) by SCD desaturases FAT-6/7 in C. elegans. On the contrary, and cytb-5.2(gk113588) mutant worms showed decreased conversion of C16:0 to C16:1(n-7) by FAT-5 desaturase. Dietary supplementation with C18:1(n-9) and C18:2(n-6) also showed that CYTB-5.1 is likely required for the activity of FAT-6/7 desaturases, but not for FAT-1 to FAT-4 desaturases. Interestingly, co-immunoprecipitation (Co-IP) demonstrated that either FAT-7 or FAT-5 has ability to interact with both CYTB-5.1 and CYTB-5.2. Moreover, duanyu1615 knockdown of cytb-5.1 upregulates the transcriptional and translational expression of fat-5 to fat-7, which may be due to the feedback induction by reduced C18:1(n-9) and downstream fatty acids. Furthermore, both CYTB-5.1 and CYTB-5.2 are involved in fat accumulation, fertility and lifespan in worms, which may be independent of changes in fatty acid compositions. Collectively, these findings for the first time reveal the differential regulation of various SCDs by distinct cytochrome b5 CYTB-5.1 and CYTB-5.2 in the biosynthesis of UFAs in C. elegans.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读