例如:"lncRNA", "apoptosis", "WRKY"

Genetic Susceptibility to Postdiarrheal Hemolytic-Uremic Syndrome After Shiga Toxin-Producing Escherichia coli Infection: A Centers for Disease Control and Prevention FoodNet Study.

J. Infect. Dis.2018 Mar 05;217(6):1000-1010
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Background:Postdiarrheal hemolytic-uremic syndrome (D+HUS) following Shiga toxin-producing Escherichia coli (STEC) infection is a serious condition lacking specific treatment. Host immune dysregulation and genetic susceptibility to complement hyperactivation are implicated in non-STEC-related HUS. However, genetic susceptibility to D+HUS remains largely uncharacterized. Methods:Patients with culture-confirmed STEC diarrhea, identified through the Centers for Disease Control and Prevention FoodNet surveillance system (2007-2012), were serotyped and classified by laboratory and/or clinical criteria as having suspected, probable, or confirmed D+HUS or as controls and underwent genotyping at 200 loci linked to nondiarrheal HUS or similar pathologies. Genetic associations with D+HUS were explored by multivariable regression, with adjustment for known risk factors. Results:Of 641 enrollees with STEC O157:H7, 80 had suspected D+HUS (41 with probable and 32 with confirmed D+HUS). Twelve genes related to cytokine signaling, complement pathways, platelet function, pathogen recognition, iron transport, and endothelial function were associated with D+HUS in multivariable-adjusted analyses (P ≤ .05). Of 12 significant single-nucleotide polymorphisms (SNPs), 5 were associated with all levels of D+HUS (intergenic SNP rs10874639, TFRC rs3804141, EDN1 rs5370, GP1BA rs121908064, and B2M rs16966334), and 7 SNPs (6 non-complement related) were associated with confirmed D+HUS (all P < .05). Conclusions:Polymorphisms in many non-complement-related genes may contribute to D+HUS susceptibility. These results require replication, but they suggest novel therapeutic targets in patients with D+HUS.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读