例如:"lncRNA", "apoptosis", "WRKY"

Endothelial microparticles-mediated transfer of microRNA-19b promotes atherosclerosis via activating perivascular adipose tissue inflammation in apoE-/- mice.

Biochem. Biophys. Res. Commun.2018 Jan 08;495(2):1922-1929. Epub 2017 Dec 02
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Microparticles(MPs) are the major carriers of circulating microRNAs. Our previous study has shown that microRNA (miR)-19b in endothelial cell-derived microparticles (EMPs) is significantly increased in patients with unstable angina. However, little is known about the relationship between miR-19b in EMPs and the progression of atherosclerosis. The aim of the present study was to define the role and potential mechanism of miR-19b incorporated in EMPs in the development of atherosclerosis. Western-diet-fed apoE-/- mice were injected with phosphate buffered solution(PBS), EMP carrying microRNA control(EMPcontrol) or miR-19b mimic (EMPmiR19b) intravenously. Systemic treatment with EMPmiR19b significantly accelerated carotid artery atherosclerosis progression by increasing lipid, macrophages and smooth muscle cells and decreasing collagen content in atherosclerotic plaque. Fluorescence-labelled EMPmiR19b injection proved that miR-19b could be transported into perivascular adipose tissue(PVAT) by EMPs. EMPmiR19b treatment also promoted inflammatory cytokines secretion and macrophages infiltration in PVAT. In further experiment, apoE-/- mice were divided into 3 groups: EMPcontrolPVAT(+), EMPmiR19bPVAT(+) and EMPmiR19bPVAT(-), based on removing or keeping pericarotid adipose tissue and injected with EMPcontrol or EMPmiR19b. Loss of PVAT attenuated EMPmiR19b-mediated effects on increasing carotid atherosclerosis formation and inflammatory cytokines level in plaque. EMPmiR19b inhibited suppressor of cytokine signaling 3 (SOCS3) expression in PVAT. Our findings demonstrate that miR-19b in EMPs exaggerates atherosclerosis progression by augmenting PVAT-specific inflammation proceeded by downregulating SOCS3 expression.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读