例如:"lncRNA", "apoptosis", "WRKY"

Serum Response Factor Promotes Dopaminergic Neuron Survival via Activation of Beclin 1-Dependent Autophagy.

Neuroscience. 2018 Feb 10;371:288-295. Epub 2017 Nov 28
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Serum response factor (SRF), a transcription factor highly expressed in neurons, is involved in neuronal survival and the pathogenesis of some neurodegenerative disorders. The ablation of SRF renders the midbrain dopaminergic (DA) neurons vulnerable to 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine-induced neurotoxicity, however, the underlying mechanisms remain poorly understood. Here, we report decreased SRF levels in the substantia nigra (SN) of rotenone-treated rats that was associated with the loss of tyrosine hydroxylase (TH)-positive neurons. SRF expression was also reduced in rotenone-treated PC12 cells in vitro. In addition, Srf knockdown augmented rotenone-induced toxicity in PC12 cells. In contrast, overexpression of Srf attenuated the cells' sensitivity to rotenone and alleviated rotenone-induced α-synuclein accumulation. The protective effect of SRF was abolished when the expression of autophagy-related proteins Beclin 1 and Atg5 was suppressed. These results suggested that SRF may promote DA neuron survival by regulating autophagy, and thus serves as a critical molecule in PD progression.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读