例如:"lncRNA", "apoptosis", "WRKY"

miR-509-3p promotes cisplatin-induced apoptosis in ovarian cancer cells through the regulation of anti-apoptotic genes.

Pharmacogenomics. 2017 Dec;18(18):1671-1682. doi:10.2217/pgs-2017-0115. Epub 2017 Nov 27
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


AIM:Previous observations have implicated miR-509-3p's ability in regulating cisplatin-triggered apoptosis in ovarian cancer. However, the underlying mechanisms were not fully understood. MATERIALS & METHODS:The roles of miR-509-3p in cellular apoptosis were assessed through MTT and DAPI assays. The confirmation of the regulation of BCL2 family members by miR-509-3p was investigated by luciferase reporter assay, western blot, quantitative real-time PCR and rescue experiments. RESULTS:MiR-509-3p can decrease the IC50 values of cisplatin and promote apoptosis in ovarian cancer cells. Furthermore, on a panel of anti-apoptotic proteins, we identified that miR-509-3p could regulate BCL2, BCL2L2 and MCL1 via their 3'UTRs. CONCLUSION:Our study demonstrates that miR-509-3p could sensitize ovarian cancer cells to cisplatin treatment by targeting multiple anti-apoptosis genes including BCL2.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读