例如:"lncRNA", "apoptosis", "WRKY"

TRPM2 dependence of ROS-induced NLRP3 activation in Alzheimer's disease.

Int. Immunopharmacol.2018 Jan;54:78-85. Epub 2017 Nov 04
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Recent studies have shown that neuroinflammation plays an important role in Alzheimer's disease (AD). Microglial cells are responsible for the phagocytosis of Amyloid-β (Aβ). However, it has been demonstrated that in AD patients the efficiency of phagocytosis decreases due to proinflammatory cytokines, such as Interleukin-1β (IL-1β), which is produced through the activation of NLRP3 inflammasome. In this study, we aimed at deciphering the mechanism underlying the NLRP3 activation. The results showed that Aβ induces an increase in the level of reactive oxygen species According to this study, produced from both mitochondria and NADPH oxidase was responsible for NLRP3 activation. In addition, it was observed that this high level of duanyu1670 activated the transient receptor potential melastatin 2 (TRPM2) channel, which causes an increase in the level of intracellular calcium. The results demonstrated that in the absence of intracellular calcium, caspase-1 cannot be activated and therefore the level of IL-1β decreases. Altogether, our findings supported the role of TRPM2 channel in NLRP3 activation in microglial cells through the exposure to Aβ.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读