例如:"lncRNA", "apoptosis", "WRKY"

GJB2 mutations: Genotypic and phenotypic correlation in a cohort of 690 hearing-impaired patients, toward a new mutation?

Int. J. Pediatr. Otorhinolaryngol.2017 Nov;102:80-85. Epub 2017 Sep 14
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


OBJECTIVES:To analyze the clinical features of hearing impairment and to search for correlations with the genotype in patients with GJB2 mutations. DESIGN:Case series. SETTING:Collaborative study in referral centers, institutional practice. PATIENTS:A total of 690 hearing-impaired patients were genotypically and phenotypically described. The mutations of GJB2 and GJB6 were studied. Heterozygous patients were searched for another mutation by microsatellite approach. MAIN OUTCOME MEASURES:Prevalence of GJB2 mutations, microsatellite approach, hearing-impairment. RESULTS:In 498 patients (72,17% of the cohort), no mutation was found. Homozygotous patients were 59 (8,55%), with 51 for c.35delG, 6 for p.M34T and 2 for GJB6. Compound heterozygous were 64 (9,28%) with 56 c.35delG-others mutations. Genotypes with biallelic non sense mutations had a high risk of severe to profound hearing impairment. It was frequently milder in compound heterozygotes than in c.35delG homozygotes. Heterozygous patients were 69 (10%) with 21 c.35delG, 20 p.M34T and 28 others mutations. We selected patients with a complete historical medical file (clinical and audiometric data). Then, we performed a microsatellite approach (multiplex PCR of short DNA fragments) to localize a new pathologic allele. Seventeen heterozygous patients were studied. Six patients (35%) showed the same haplotype. They were compound heterozygous bearing a new pathologic allele. CONCLUSION:Genotype may affect deafness severity, but environmental and other genetic factors may also modulate the severity and evolution of GJB2-GJB6 deafness. A new haplotype for GJB2 is described but the exact mutation remains unknown.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读