[No authors listed]
Pairing in vivo imaging and computational modeling of dendritic arborization (da) neurons from the fruit fly larva provides a unique window into neuronal growth and underlying molecular processes. We image, reconstruct, and analyze the morphology of wild-type, and mutant da neurons. We then use local and global rule-based stochastic simulations to generate artificial arbors, and identify the parameters that statistically best approximate the real data. We observe structural homeostasis in all da classes, where an increase in size of one dendritic stem is compensated by a reduction in the other stems of the same neuron. Local rule models show that bifurcation probability is determined by branch order, while branch length depends on path distance from the soma. Global rule simulations suggest that most complex morphologies tend to be constrained by resource optimization, while simpler neuron classes privilege path distance conservation. Genetic manipulations affect both the local and global optimal parameters, demonstrating functional perturbations in growth mechanisms.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |