例如:"lncRNA", "apoptosis", "WRKY"

In vitro modeling of experimental succinic semialdehyde dehydrogenase deficiency (SSADHD) using brain-derived neural stem cells.

PLoS One. 2017 Oct 20;12(10):e0186919. eCollection 2017
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


We explored the utility of neural stem cells (NSCs) as an in vitro model for evaluating preclinical therapeutics in succinic semialdehyde dehydrogenase-deficient (SSADHD) mice. NSCs were obtained from aldh5a1+/+ and aldh5a1-/- mice (aldh5a1 = aldehyde dehydrogenase 5a1 = SSADH). Multiple parameters were evaluated including: (1) production of GHB (γ-hydroxybutyrate), the biochemical hallmark of SSADHD; (2) rescue from cell death with the dual mTOR (mechanistic target of rapamycin) inhibitor, XL-765, an agent previously shown to rescue aldh5a1-/- mice from premature lethality; (3) mitochondrial number, total reactive oxygen species, and mitochondrial superoxide production, all previously documented as abnormal in aldh5a1-/- mice; (4) total ATP levels and ATP consumption; and (5) selected gene expression profiles associated with epilepsy, a prominent feature in both experimental and human SSADHD. Patterns of dysfunction were observed in all of these parameters and mirrored earlier findings in aldh5a1-/- mice. Patterns of dysregulated gene expression between hypothalamus and NSCs centered on ion channels, GABAergic receptors, and inflammation, suggesting novel pathomechanisms as well as a developmental ontogeny for gene expression potentially associated with the murine epileptic phenotype. The NSC model of SSADHD will be valuable in providing a first-tier screen for centrally-acting therapeutics and prioritizing therapeutic concepts of preclinical animal studies applicable to SSADHD.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读