例如:"lncRNA", "apoptosis", "WRKY"

Substitutions in conserved regions preceding and within the linker affect activity and flexibility of tRNase ZL, the long form of tRNase Z.

PLoS One. 2017 Oct 18;12(10):e0186277. eCollection 2017
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The enzyme tRNase Z, a member of the metallo-β-lactamase family, endonucleolytically removes 3' trailers from precursor tRNAs, preparing them for CCA addition and aminoacylation. The short form of tRNase Z, tRNase ZS, functions as a homodimer and is found in all prokaryotes and some eukaryotes. The long form, tRNase ZL, related to tRNase ZS through tandem duplication and found only in eukaryotes, possesses ~2,000-fold greater catalytic efficiency than tRNase ZS. tRNase ZL consists of related but diverged amino and carboxy domains connected by a flexible linker (also referred to as a flexible tether) and functions as a monomer. The amino domain retains the flexible arm responsible for substrate recognition and binding while the carboxy domain retains the active site. The linker region was explored by Ala-scanning through two conserved regions of D. melanogaster tRNase Z: NdomTprox, located at the carboxy end of the amino domain proximal to the linker, and Tflex, a flexible site in the linker. Periodic substitutions in a hydrophobic patch (F329 and L332) at the carboxy end of NdomTprox show 2,700 and 670-fold impairment relative to wild type, respectively, accompanied by reduced linker flexibility at N-T inside the Ndom- linker boundary. The Ala substitution for N378 in the Tflex region has 10-fold higher catalytic efficiency than wild type and locally decreased flexibility, while the Ala substitution at R382 reduces catalytic efficiency ~50-fold. These changes in pre-tRNA processing kinetics and protein flexibility are interpreted in light of a recent crystal structure for S. cerevisiae tRNase Z, suggesting transmission of local changes in hydrophobicity into the skeleton of the amino domain.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读