例如:"lncRNA", "apoptosis", "WRKY"

DNA METHYLTRANSFERASE1-mediated shoot regeneration is regulated by cytokinin-induced cell cycle in Arabidopsis.

New Phytol. 2018 Jan;217(1):219-232. doi:10.1111/nph.14814. Epub 2017 Sep 27
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


DNA methylation plays a critical role in diverse biological processes of plants. Arabidopsis DNA METHYLTRANSFERASE1 (MET1) represses shoot regeneration by inhibiting WUSCHEL (WUS) expression, which is essential for shoot initiation. However, the upstream signals regulating MET1 expression during this process are unclear. We analyzed the signals regulating MET1 expression using a number of established strategies, such as genetic analysis, confocal microscopy, quantitative real-time PCR and chromatin immunoprecipitation. MET1 expression patterns underwent dynamic changes with the initiation of WUS during shoot regeneration. The cell cycle regulator E2FA was characterized as an upstream factor directly promoting MET1 expression. Moreover, cytokinin promoted MET1 expression partially by enhancing CYCD3 expression. Our findings reveal that MET1-mediated shoot regeneration is regulated by the cytokinin-induced cell cycle, and provide new insights into the regulation of DNA methylation in shoot regeneration.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读