例如:"lncRNA", "apoptosis", "WRKY"

Copper impairs zebrafish swimbladder development by down-regulating Wnt signaling.

Aquat. Toxicol.2017 Nov;192:155-164. Epub 2017 Sep 21
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Copper nanoparticles (CuNPs) are used widely in different fields due to their attractive and effective abilities in inhibiting bacteria and fungi, but little information is available about their biological effects and potential molecular mechanisms on fish development. Here, CuNPs and copper (II) ions (Cu2+) were revealed to inhibit the specification and formation of three layers of zebrafish embryonic posterior swimbladder and impair its inflation in a stage-specific manner. CuNPs and Cu2+ were also revealed to down-regulate Wnt signaling in embryos. Furthermore, Wnt agonist 6-Bromoindirubin-3'-oxime (BIO) was found to neutralize the inhibiting effects of CuNPs or Cu2+ or both on zebrafish swimbladder development. The integrated data here provide the first evidence that both CuNPs and Cu2+ act on the specification and growth of the three layers of swimbladder and inhibit its inflation by down-regulating Wnt signaling in a stage-specific manner during embryogenesis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读