例如:"lncRNA", "apoptosis", "WRKY"

Molecular analysis of human solute carrier SLC26 anion transporter disease-causing mutations using 3-dimensional homology modeling.

Biochim. Biophys. Acta. 2017 Dec;1859(12):2420-2434. Epub 2017 Sep 21
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The availability of the first crystal structure of a bacterial member (SLC26Dg) of the solute carrier SLC26 family of anion transporters has allowed us to create 3-dimensional models of all 10 human members (SLC26A1-A11, A10 being a pseudogene) of these membrane proteins using the Phyre2 bioinformatic tool. The homology modeling predicted that the SLC26 human proteins, like the SLC26Dg template, all consist of 14 transmembrane segments (TM) arranged in a 7+7 inverted topology with the amino-termini of two half-helices (TM3 and 10) facing each other in the centre of the protein to create the anion-binding site, linked to a C-terminal cytosolic sulfate transporter anti-sigma factor antagonist (STAS) domain. A plethora of human diseases are associated with mutations in the genes encoding human SLC26 transporters, including chondrodysplasias with varying severity in SLC26A2 (~50 mutations, 27 point mutations), congenital chloride-losing diarrhea in SLC26A3 (~70 mutations, 31 point mutations) and Pendred Syndrome or deafness autosomal recessive type 4 in SLC26A4 (~500 mutations, 203 point mutations). We have localized all of these point mutations in the 3-dimensional structures of the respective SLC26A2, A3 and A4 proteins and systematically analyzed their effect on protein structure. While most disease-causing mutations may cause folding defects resulting in impaired trafficking of these membrane glycoproteins from the endoplasmic reticulum to the cell surface - as demonstrated in a number of functional expression studies - the modeling also revealed that a number of pathogenic mutations are localized to the anion-binding site, which may directly affect transport function.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读