例如:"lncRNA", "apoptosis", "WRKY"

1-alpha,25-Dihydroxyvitamin D3 up-regulates the expression of 2 types of human intestinal alkaline phosphatase alternative splicing variants in Caco-2 cells and may be an important regulator of their expression in gut homeostasis.

Nutr Res. 2017 Oct;46:59-67. Epub 2017 Aug 04
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Vitamin D insufficiency is associated with a greater risk of osteoporosis and also influences skeletal muscle functions, differentiation, and development. The principal function of vitamin D in calcium homeostasis is to increase the absorption of calcium from the intestine, and the level of alkaline phosphatase (ALP) activity, a differentiation marker for intestinal epithelial cells, is regulated by vitamin D. Intestinal-type ALP is expressed at a high concentration in the brush border membrane of intestinal epithelial cells, and is known to be affected by several kinds of nutrients. Recent reviews have highlighted the importance of intestinal-type ALP in gut homeostasis. Intestinal-type ALP controls bacterial endotoxin-induced inflammation by dephosphorylating lipopolysaccharide and is a gut mucosal defense factor. In this study, we investigated the influence of vitamin D on the expression of 2 types of alternative mRNA variants encoding the human alkaline phosphatase, intestinal (ALPI) gene in human Caco-2 cells as an in vitro model of the small intestinal epithelium. After treatment with 1-alpha,25-dihydroxyvitamin D3, the biologically active form of vitamin D3, there were significant increases in the ALP activities of Caco-2 cells. Inhibitor and thermal inactivation experiments showed that the increased ALP had properties of intestinal-type ALP. Reverse transcription-polymerase chain reaction analysis revealed that expression of the 2 types of alternative mRNA variants from the ALPI gene was markedly enhanced by vitamin D in Caco-2 cells. In conclusion, these findings agree with the hypothesis: vitamin D up-regulated the expression of 2 types of human intestinal alkaline phosphatase alternative splicing variants in Caco-2 cells; vitamin D may be an important regulator of ALPI gene expression in gut homeostasis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读