[No authors listed]
Proteomic studies have established that Trz1, Nuc1 and mutarotase form a complex in yeast. Trz1 is a β-lactamase-type RNase composed of two β-lactamase-type domains connected by a long linker that is responsible for the endonucleolytic cleavage at the 3'-end of tRNAs during the maturation process (RNase Z activity); Nuc1 is a dimeric mitochondrial nuclease involved in apoptosis, while mutarotase (encoded by YMR099C) catalyzes the conversion between the α- and β-configuration of glucose-6-phosphate. Using gel filtration, small angle X-ray scattering and electron microscopy, we demonstrated that Trz1, Nuc1 and mutarotase form a very stable heterohexamer, composed of two copies of each of the three subunits. A Nuc1 homodimer is at the center of the complex, creating a two-fold symmetry and interacting with both Trz1 and mutarotase. Enzymatic characterization of the ternary complex revealed that the activities of Trz1 and mutarotase are not affected by complex formation, but that the Nuc1 activity is completely inhibited by mutarotase and partially by Trz1. This suggests that mutarotase and Trz1 might be regulators of the Nuc1 apoptotic nuclease activity.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |