例如:"lncRNA", "apoptosis", "WRKY"

KIF5B-RET Oncoprotein Signals through a Multi-kinase Signaling Hub.

Cell Rep. 2017 Sep 05;20(10):2368-2383
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Gene fusions are increasingly recognized as important cancer drivers. The KIF5B-RET gene has been identified as a primary driver in a subset of lung adenocarcinomas. Targeting human KIF5B-RET to epithelia in Drosophila directed multiple aspects of transformation, including hyperproliferation, epithelial-to-mesenchymal transition, invasion, and extension of striking invadopodia-like processes. The KIF5B-RET-transformed human bronchial cell line showed similar aspects of transformation, including invadopodia-like processes. Through a combination of genetic and biochemical studies, we demonstrate that the kinesin and kinase domains of KIF5B-RET act together to establish an emergent microtubule and RAB-vesicle-dependent RET-SRC-EGFR-FGFR signaling hub. We demonstrate that drugs designed to inhibit RET alone work poorly in KIF5B-RET-transformed cells. However, combining the RET inhibitor sorafenib with drugs that target EGFR, microtubules, or FGFR led to strong efficacy in both Drosophila and human cell line KIF5B-RET models. This work demonstrates the utility of exploring the full biology of fusions to identify rational therapeutic strategies.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读