例如:"lncRNA", "apoptosis", "WRKY"

In Vivo Expression of miR-32 Induces Proliferation in Prostate Epithelium.

Am. J. Pathol.2017 Nov;187(11):2546-2557. Epub 2017 Aug 19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


miRNAs are important regulators of gene expression and are often deregulated in cancer. We have previously shown that miR-32 is an androgen receptor-regulated miRNA overexpressed in castration-resistant prostate cancer and that miR-32 can improve prostate cancer cell growth in vitro. To assess the effects of miR-32 in vivo, we developed transgenic mice overexpressing miR-32 in the prostate. The study indicated that transgenic miR-32 expression increases replicative activity in the prostate epithelium. We further observed an aging-associated increase in the incidence of goblet cell metaplasia in the prostate epithelium. Furthermore, aged miR-32 transgenic mice exhibited metaplasia-associated prostatic intraepithelial neoplasia at a low frequency. When crossbred with mice lacking the other allele of tumor-suppressor Pten (miR-32xPten(+/-) mice), miR-32 expression increased both the incidence and the replicative activity of prostatic intraepithelial neoplasia lesions in the dorsal prostate. The miR-32xPten(+/-) mice also demonstrated increased goblet cell metaplasia compared with Pten(+/-) mice. By performing a microarray analysis of mouse prostate tissue to screen downstream targets and effectors of miR-32, we identified RAC2 as a potential, and clinically relevant, target of miR-32. We also demonstrate down-regulation of several interesting, potentially prostate cancer-relevant genes (Spink1, Spink5, and Casp1) by miR-32 in the prostate tissue. The results demonstrate that miR-32 increases proliferation and promotes metaplastic transformation in mouse prostate epithelium, which may promote neoplastic alterations in the prostate.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读