例如:"lncRNA", "apoptosis", "WRKY"

Restoring diabetes-induced autophagic flux arrest in ischemic/reperfused heart by ADIPOR (adiponectin receptor) activation involves both AMPK-dependent and AMPK-independent signaling.

Autophagy. 2017;13(11):1855-1869. doi:10.1080/15548627.2017.1358848. Epub 2017 Sep 01
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Macroautophagy/autophagy is increasingly recognized as an important regulator of myocardial ischemia-reperfusion (MI-R) injury. However, whether and how diabetes may alter autophagy in response to MI-R remains unknown. Deficiency of ADIPOQ, a cardioprotective molecule, markedly increases MI-R injury. However, the role of diabetic hypoadiponectinemia in cardiac autophagy alteration after MI-R is unclear. Utilizing normal control (NC), high-fat-diet-induced diabetes, and Adipoq knockout (adipoq-/-) mice, we demonstrated that autophagosome formation was modestly inhibited and autophagosome clearance was markedly impaired in the diabetic heart subjected to MI-R. adipoq-/- largely reproduced the phenotypic alterations observed in the ischemic-reperfused diabetic heart. Treatment of diabetic and adipoq-/- mice with AdipoRon, a novel ADIPOR (adiponectin receptor) agonist, stimulated autophagosome formation, markedly increased autophagosome clearance, reduced infarct size, and improved cardiac function (P < 0.01 vs vehicle). Mechanistically, AdipoRon caused significant phosphorylation of AMPK-BECN1 (Ser93/Thr119)-class III PtdIns3K (Ser164) and enhanced lysosome protein LAMP2 expression both in vivo and in isolated adult cardiomyocytes. Pharmacological AMPK inhibition or genetic Prkaa2 mutation abolished AdipoRon-induced BECN1 (Ser93/Thr119)-PtdIns3K (Ser164) phosphorylation and AdipoRon-stimulated autophagosome formation. However, AdipoRon-induced LAMP2 expression, AdipoRon-stimulated autophagosome clearance, and AdipoRon-suppressed superoxide generation were not affected by AMPK inhibition. Treatment with MnTMPyP (a superoxide scavenger) increased LAMP2 expression and stimulated autophagosome clearance in simulated ischemic-reperfused cardiomyocytes. However, no additive effect between AdipoRon and MnTMPyP was observed. Collectively, these results demonstrate that hypoadiponectinemia impairs autophagic flux, contributing to enhanced MI-R injury in the diabetic state. ADIPOR activation restores AMPK-mediated autophagosome formation and antioxidant-mediated autophagosome clearance, representing a novel intervention effective against MI-R injury in diabetic conditions.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读