例如:"lncRNA", "apoptosis", "WRKY"

The cardiovascular toxicity of triadimefon in early life stage of zebrafish and potential implications to human health.

Environ. Pollut.2017 Dec;231(Pt 1):1093-1103. Epub 2017 Aug 10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The health risk of triadimefon (TF) to cardiovascular system of human is still unclear, especially to pesticide suicides population, occupational population (farmers, retailers and pharmaceutical workers), and special population (young children and infants, pregnant women, older people, and those with compromised immune systems) who are at a greater risk. Therefore, firstly we explored the toxic effects and possible mechanism of cardiovascular toxicity induced by TF using zebrafish model. Zebrafish at stage of 48 h post fertilization (hpf) exposed to TF for 24 h exhibited morphological malformations which were further confirmed by histopathologic examination, including pericardial edema, circulation abnormalities, serious venous thrombosis and increased distance between the sinus venosus (SV) and bulbus arteriosus (BA) regions of the heart. In addition to morphological changes, TF induced functional deficits in the heart of zebrafish, including bradycardia and a significant reduced cardiac output that became more serious at higher concentrations. To better understand the possible molecular mechanisms underlying cardiovascular toxicity in zebrafish, we investigated the transcriptional level of genes related to calcium signaling pathway and cardiac muscle contraction. Q-PCR (quantitative real-time polymerase chain reaction) results demonstrated that the expression level of genes related to ATPase (atp2a1l, atp1b2b, atp1a3b), calcium channel (cacna1ab, cacna1da) and cardiac troponin C (tnnc1a) were significantly decreased after TF exposure. For the first time, the present study revealed that TF exposure had observable morphological and functional negative impacts on cardiovascular system of zebrafish. Mechanistically, this toxicity might result from the pressure of down-regulation of genes associated with calcium signaling pathway and cardiac muscle contraction following TF exposure. These findings generated here can provide information for better pesticide poisoning treatments, occupational disease prevention, and providing theoretical foundation for risk management measures.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读