例如:"lncRNA", "apoptosis", "WRKY"

Resistin-Like Molecule Beta (RELM-β) Regulates Proliferation of Human Diabetic Nephropathy Mesangial Cells via Mitogen-Activated Protein Kinases (MAPK) Signaling Pathway.

Med Sci Monit. 2017 Aug 12;23:3897-3903
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND Resistin-like molecule beta (RELM-β) has been reported to be associated with diabetic nephropathy (DN). However, the role of RELM-β in DN is poorly understood. This study was conducted to delineate the underlying mechanisms of action and to investigate the role of RELM-β in the primitive development of DN via MAPK signaling pathways. MATERIAL AND METHODS Lentivirus-mediated vectors and technology were used to establish the model of RELM-β up-regulated and down-regulated expression in human mesangial cells (HMCs). The proliferation of HMCs was detected through CCK-8 method. The cell cycle and cell proliferation of HMCs was detected through flow cytometry. The MAPKs pathway protein activity was detected through Western blotting. RESULTS The HMCs with up-regulated and down-regulated expression of RELM-β increased or decreased significantly at 2-3 days. The HMCs with high glucose intervention reversed the proliferation inhibition. The HMCs with exogenous glucose or RELM-β protein intervention partially reversed the cell cycle inhibition. Among the MAPKs pathway, the phosphorylation activity of p38MAPK and JNK increased or decreased and ERK1/2 did not change in the overexpression or inhibition of RELM-β. The p38 MAPK pathway inhibitor SB202190 significantly inhibited the proliferation of HMCs caused by overexpression of RELM-β. Up-regulated expression of RELM-b induced the phosphorylation of p38 MAPK, JNK in HMCs and promoted HMCs proliferation and participated in early DN through the MAPKs pathway. CONCLUSIONS The results provide evidence that RELM-b is a potential molecular target for the treatment of DN.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读