例如:"lncRNA", "apoptosis", "WRKY"

Metabolic disruption of zebrafish (Danio rerio) embryos by bisphenol A. An integrated metabolomic and transcriptomic approach.

Environ. Pollut.2017 Dec;231(Pt 1):22-36. Epub 2017 Aug 04
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Although bisphenol A (BPA) is commonly recognized as an endocrine disruptor, the metabolic consequences of its exposure are still poorly understood. In this study, we present a non-targeted LC-MS based metabolomic analysis in combination with a full-genome, high-throughput RNA sequencing (RNA-Seq) to reveal the metabolic effects and the subjacent regulatory pathways of exposing zebrafish embryos to BPA during the first 120 hours post-fertilization. We applied multivariate data analysis methods to extract biochemical information from the LC-MS and RNA-Seq complex datasets and to perform testable predictions of the phenotypic adverse effects. Metabolomic and transcriptomic data revealed a similar subset of altered pathways, despite the large difference in the number of identified biomarkers (around 50 metabolites and more than 1000 genes). These results suggest that even a moderate coverage of zebrafish metabolome may be representative of the global metabolic changes. These multi-omic responses indicate a specific metabolic disruption by BPA affecting different signaling pathways, such as retinoid and prostaglandin metabolism. The combination of transcriptomic and metabolomic data allowed a dynamic interpretation of the results that could not be drawn from either single dataset. These results illustrate the utility of -omic integrative analyses for characterizing the physiological effects of toxicants beyond the mere indication of the affected pathways.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读