例如:"lncRNA", "apoptosis", "WRKY"

Modulation of human Kv4.3/KChIP2 channel inactivation kinetics by cytoplasmic Ca2.

Pflugers Arch.2017 Nov;469(11):1457-1470. Epub 2017 Jul 22
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The transient outward current (I to) in the human heart is mediated by Kv4.3 channels complexed with Kv channel interacting protein (KChIP) 2, a cytoplasmic Ca2+-binding EF-hand protein known to modulate Kv4.3 inactivation gating upon heterologous co-expression. We studied Kv4.3 channels co-expressed with wild-type (wt) or EF-hand-mutated (ΔEF) KChIP2 in human embryonic kidney (HEK) 293 cells. Co-expression took place in the absence or presence of BAPTA-AM, and macroscopic currents were recorded in the whole-cell patch-clamp configuration with different free Ca2+ concentrations in the patch-pipette. Our data indicate that Ca2+ is not necessary for Kv4.3/KChIP2 complex formation. The Kv4.3/KChIP2-mediated current decay was faster and the recovery of Kv4.3/KChIP2 channels from inactivation slower with 50 μM Ca2+ than with BAPTA (nominal Ca2+-free) in the patch-pipette. The apparent Ca2+-mediated slowing of recovery kinetics was still observed when EF-hand 4 of KChIP2 was mutated (ΔEF4) but not when EF-hand 2 (ΔEF2) was mutated, and turned into a Ca2+-mediated acceleration of recovery kinetics when EF-hand 3 (ΔEF3) was mutated. In the presence of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 cytoplasmic Ca2+ (50 μM) induced an acceleration of Kv4.3/KChIP2 recovery kinetics, which was still observed when EF-hand 2 was mutated (ΔEF2) but not when EF-hand 3 (ΔEF3) or EF-hand 4 (ΔEF4) was mutated. Our results support the notion that binding of Ca2+ to KChIP2 EF-hands can acutely modulate Kv4.3/KChIP2 channel inactivation gating, but the Ca2+-dependent gating modulation depends on CaMKII action. Our findings speak for an acute modulation of I to kinetics and frequency-dependent I to availability in cardiomyocytes under conditions with elevated Ca2+ levels and CaMKII activity.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读