例如:"lncRNA", "apoptosis", "WRKY"

A mammalian mirtron miR-1224 promotes tube-formation of human primary endothelial cells by targeting anti-angiogenic factor epsin2.

Sci Rep. 2017 Jul 17;7(1):5541
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Angiogenesis, new vessel formation from pre-existing vessels, is a highly conserved event through vertebrates. However, the system for tuning angiogenesis by species-intrinsic factors is totally unknown. miR-1224 is a member of mammal-specific mirtrons, which were identified as non-canonical microRNAs. We found that the expression of miR-1224 was upregulated in capillary-like tube-forming human umbilical vein endothelial cells on Matrigel. Enforced expression of miR-1224 stimulated tube formation, whereas repression of endogenous miR-1224 inhibited formation. Enforced expression of miR-1224 enhanced VEGF signaling and repressed NOTCH signaling. The adaptor protein of clathrin-dependent endocytosis, epsin2, which has been shown to be a suppressor of angiogenesis, was a direct target of miR-1224. Knockdown of EPN2 stimulated tube formation, while overexpression of EPN2 repressed miR-1224-mediated stimulation. Our findings indicate that miR-1224 is a mammal specific modulator of angiogenesis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读