例如:"lncRNA", "apoptosis", "WRKY"

DOK3 Modulates Bone Remodeling by Negatively Regulating Osteoclastogenesis and Positively Regulating Osteoblastogenesis.

J. Bone Miner. Res.2017 Nov;32(11):2207-2218. doi:10.1002/jbmr.3205. Epub 2017 Aug 02
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Osteoclastogenesis is essential for bone remodeling and normal skeletal maintenance. Receptor activator of NF-κB ligand (RANKL) promotes osteoclast differentiation and function but requires costimulation of immunoreceptor tyrosine-based activation motif (ITAM)-coupled immunoreceptors. Triggering receptor expressed on myeloid cells-2 (TREM2) coupled to ITAM-adaptor protein DNAX activation protein 12kDA (DAP12) provides costimulation of intracellular calcium signaling during osteoclastogenesis. Previously, we found that downstream of kinase-3 (DOK3) physically associates with DAP12 to inhibit toll-like receptor (TLR)-induced inflammatory signaling in macrophages. However, whether and how DOK3 modulates DAP12-dependent osteoclastogenesis is unknown and the focus of this study. Bone microarchitecture and histology of sex- and age-matched wild-type (WT) and DOK3-deficient (DOK3-/- ) mice were evaluated. Male and female DOK3-/- mice have significantly reduced trabecular bone mass compared with WT mice with increased TRAP+ osteoclasts in vivo. In vitro, DOK3-/- bone marrow-derived macrophages (BMMs) have increased macrophage colony-stimulating factor (M-CSF)-induced proliferation and increased sensitivity to RANKL-induced osteoclastogenesis. Compared with WT, DOK3-/- osteoclasts are significantly larger with more nuclei and have increased resorptive capacity. Mechanistically, DOK3 limits osteoclastogenesis by inhibiting activation of Syk and ERK in response to RANKL and M-CSF. DOK3 is phosphorylated in a DAP12-dependent manner and associates with Grb2 and Cbl. Compared with DAP12-/- mice with high bone mass, DOK3- and DAP12- doubly deficient mice (DKO) have normalized bone mass, indicating that DOK3 also limits DAP12-independent osteoclastogenesis in vivo. In vitro osteoclasts derived from DKO mice are mononuclear with poor resorptive capacity similar to DAP12-/- osteoclasts. Histomorphometry reveals that DOK3-/- mice also have reduced osteoblast parameters. DOK3-/- osteoblasts have reduced in vitro osteoblastogenesis and increased osteoprotegerin (OPG) to RANKL expression ratio compared with WT osteoblasts. Co-culture of WT and DOK3-/- osteoblasts with pre-osteoclasts reveals a reduced capacity of DOK3-/- osteoblasts to support osteoclastogenesis. These data indicate that DOK3 regulates bone remodeling by negatively regulating M-CSF- and RANKL-mediated osteoclastogenesis and positively regulating osteoblastogenesis. © 2017 American Society for Bone and Mineral Research.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读