[No authors listed]
Preventing obesity requires a precise balance between deposition into and mobilization from fat stores, but regulatory mechanisms are incompletely understood. Drosophila Split ends (Spen) is the founding member of a conserved family of RNA-binding proteins involved in transcriptional regulation and frequently mutated in human cancers. We find that manipulating Spen expression alters larval fat levels in a cell-autonomous manner. Spen-depleted larvae had defects in energy liberation from stores, including starvation sensitivity and major changes in the levels of metabolic enzymes and metabolites, particularly those involved in β-oxidation. Spenito, a small Spen family member, counteracted Spen function in fat regulation. Finally, mouse Spen and Spenito transcript levels scaled directly with body fat in vivo, suggesting a conserved role in fat liberation and catabolism. This study demonstrates that Spen is a key regulator of energy balance and provides a molecular context to understand the metabolic defects that arise from Spen dysfunction.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |