例如:"lncRNA", "apoptosis", "WRKY"

miR-873 suppresses H9C2 cardiomyocyte proliferation by targeting GLI1.

Gene. 2017 Aug 30;626:426-432. Epub 2017 Jun 02
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


MicroRNAs (miRNAs) are a class of endogenous, non-coding small RNAs that regulate the expression of target genes. Previous studies have suggested that miRNAs are key regulators in cardiovascular systems. This study investigated the role of miR-873 in H9C2 cardiomyocytes by targeting glioma-associated oncogene 1 (GLI1). miR-873 was significantly up-regulated in serum samples from congenital heart disease (CHD) patients compared with those from normal individuals. Furthermore, miR-873 over-expression suppressed H9C2 proliferation and induced cell cycle arrest. Bioinformatic algorithms revealed a predicted target site for miR-873 in the 3'-untranslated region (3'UTR) of GLI1, which was verified using a dual-luciferase reporter assay. qPCR and western blot analysis also showed that miR-873 negatively regulated GLI1 mRNA and protein expression in H9C2 cells. Conversely, GLI1 over-expression partially reversed the growth-inhibitory effect of miR-873. To summarize, our data suggest that miR-873 is a novel miRNA that regulates H9C2 cell proliferation via targeting GLI1, and miR-873 may serve as a new potential biomarker diagnosis in CHD in the future.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读