例如:"lncRNA", "apoptosis", "WRKY"

Origin of a rapidly evolving homeostatic control system programming testis function.

J. Endocrinol.2017 Aug;234(2):217-232. Epub 2017 Jun 02
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Mammals share common strategies for regulating reproduction, including a conserved hypothalamic-pituitary-gonadal axis; yet, individual species exhibit differences in reproductive performance. In this report, we describe the discovery of a species-restricted homeostatic control system programming testis growth and function. Prl3c1 is a member of the prolactin gene family and its protein product (PLP-J) was discovered as a uterine cytokine contributing to the establishment of pregnancy. We utilized mouse mutagenesis of Prl3c1 and revealed its involvement in the regulation of the male reproductive axis. The Prl3c1-null male reproductive phenotype was characterized by testiculomegaly and hyperandrogenism. The larger testes in the Prl3c1-null mice were associated with an expansion of the Leydig cell compartment. Prl3c1 locus is a template for two transcripts (Prl3c1-v1 and Prl3c1-v2) expressed in a tissue-specific pattern. Prl3c1-v1 is expressed in uterine decidua, while Prl3c1-v2 is expressed in Leydig cells of the testis. 5'RACE, chromatin immunoprecipitation and DNA methylation analyses were used to define cell-specific promoter usage and alternative transcript expression. We examined the Prl3c1 locus in five murid rodents and showed that the testicular transcript and encoded protein are the result of a recent retrotransposition event at the Mus musculus Prl3c1 locus. Prl3c1-v1 encodes PLP-J V1 and Prl3c1-v2 encodes PLP-J V2. Each protein exhibits distinct intracellular targeting and actions. PLP-J V2 possesses Leydig cell-static actions consistent with the Prl3c1-null testicular phenotype. Analysis of the biology of the Prl3c1 gene has provided insight into a previously unappreciated homeostatic setpoint control system programming testicular growth and function.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读