例如:"lncRNA", "apoptosis", "WRKY"

Transcription factors CEP-1/p53 and CEH-23 collaborate with AAK-2/AMPK to modulate longevity in Caenorhabditis elegans.

Aging Cell. 2017 Aug;16(4):814-824. doi:10.1111/acel.12619. Epub 2017 May 30
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


A decline in mitochondrial electron transport chain (ETC) function has long been implicated in aging and various diseases. Recently, moderate mitochondrial ETC dysfunction has been found to prolong lifespan in diverse organisms, suggesting a conserved and complex role of mitochondria in longevity determination. Several nuclear transcription factors have been demonstrated to mediate the lifespan extension effect associated with partial impairment of the ETC, suggesting that compensatory transcriptional response to be crucial. In this study, we showed that the transcription factors CEP-1/p53 and CEH-23 act through a similar mechanism to modulate longevity in response to defective ETC in Caenorhabditis elegans. Genomewide gene expression profiling comparison revealed a new link between these two transcription factors and AAK-2/AMP kinase (AMPK) signaling. Further functional analyses suggested that CEP-1/p53 and CEH-23 act downstream of AAK-2/AMPK signaling and CRTC-1 transcriptional coactivator to promote stress resistance and lifespan. As AAK-2, CEP-1, and CEH-23 are all highly conserved, our findings likely provide important insights for understanding the organismal adaptive response to mitochondrial dysfunction in diverse organisms and will be relevant to aging and pathologies with a mitochondrial etiology in human. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读