例如:"lncRNA", "apoptosis", "WRKY"

Deletion of ADAM-9 in HGF/CDK4 mice impairs melanoma development and metastasis.

Oncogene. 2017 Aug 31;36(35):5058-5067. Epub 2017 May 29
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


, demonstrated to spontaneously develop melanoma. Spontaneous melanoma arose less frequently in ADAM-9-deleted mice than in controls. Similarly reduced tumor numbers (although with faster growth kinetics) were detected upon induction of melanoma with 7,12-dimethylbenz[a]anthracene (DMBA). However, more lesions were induced at early time points in the absence of ADAM-9. Increased initial and decreased late tumor numbers were paralleled by altered tumor cell proliferation, but not apoptosis or inflammation. Importantly, significantly reduced lung metastases were detected upon ADAM-9 deletion. Using in vitro assays to address this effect mechanistically, we detected reduced adhesion and transmigration of ADAM-9-silenced melanoma cells to/through the endothelium. This implies that ADAM-9 functionally and cell autonomously mediates extravasation of melanoma cells. In vitro and in vivo we demonstrated that the basement membrane (BM) component laminin β3-chain is a direct substrate of ADAM-9, thus contributing to destabilization and disruption of the BM barrier during invasion. In in vitro invasion assays using human melanoma cells and skin equivalents, depletion of ADAM-9 resulted in decreased invasion of the BM, which remained almost completely intact, as shown by continuous staining for laminin β3-chain. Importantly, supplying soluble ADAM-9 to the system reversed this effect. Taken together, our data show that melanoma derived ADAM-9 autonomously contributes to melanoma progression by modulating cell adhesion to the endothelium and altering BM integrity by proteolytically processing the laminin-β3 chain. This newly described process and ADAM-9 itself may represent potential targets for anti-tumor therapies.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读