例如:"lncRNA", "apoptosis", "WRKY"

The histone acetylation mediated by Gcn5 regulates the Hoxc11 gene expression in MEFs.

Acta Biochim. Biophys. Sin. (Shanghai). 2017 Jul 01;49(7):643-648
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Hox genes are responsible for encoding transcription factors that are essential for anterior-posterior body patterning at early stages of embryogenesis. However, detailed mechanisms of Hox genes are yet to be defined. Protein kinase B alpha (Akt1) was previously identified as a possible upstream regulator of Hox genes. Furthermore, the Hoxc11 gene has been upregulated in Akt1 null (Akt1-/-) mouse embryonic fibroblasts (MEFs), while repressed in wild-type MEFs. In this study, we propose to investigate the role of Gcn5, a histone acetyltransferase, in the regulation of Hoxc11 expression in MEFs. We showed that the H3 lysine 9 acetylation (H3K9ac) status has the same correlation with Hoxc11 expression and reported that Gcn5 is associated with the upregulation of Hoxc11 expression through H3K9ac in Akt1-/- MEFs. Since Hoxc11 was upregulated through histone acetylation in Akt1-/- MEFs, a functional role of Gcn5 on Hoxc11 expression was analyzed in Akt1-/- MEFs treated with Gcn5 specific inhibitor or transfected with Gcn5-small interfering RNA (Gcn5-siRNA). When the expression of Hoxc11 was analyzed using RT-PCR and real-time PCR, the Hoxc11 mRNA level was found to be similar in both Akt1-/- MEFs and control-siRNA transfected Akt1-/- MEFs. However, the Hoxc11 expression level was decreased in Gcn5-inhibited or Gcn5-knockdown Akt1-/- MEFs. Additionally, to analyze Gcn5-mediated histone acetylation status, chromatin immunoprecipitation assay was carried out in Gcn5-siRNA-transfected Akt1-/- MEFs. The H3K9ac at the Hoxc11 locus was decreased in Gcn5-knockdown Akt1-/- MEFs compared to controls. Based on these findings, we conclude that Gcn5 regulates Hoxc11 gene expression through mediating site-specific H3K9 acetylation in Akt1-/- MEFs.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读