例如:"lncRNA", "apoptosis", "WRKY"

Mutation in TDRD9 causes non-obstructive azoospermia in infertile men.

J. Med. Genet.2017 Sep;54(9):633-639. Epub 2017 May 23
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Azoospermia is diagnosed when sperm cells are completely absent in the ejaculate even after centrifugation. It is identified in approximately 1% of all men and in 10%-20% of infertile males. Non-obstructive azoospermia (NOA) is characterised by the absence of sperm due to either a Sertoli cell-only pattern, maturation arrest, hypospermatogenesis or mixed patterns. NOA is a severe form of male infertility, with limited treatment options and low fertility success rates. In the majority of patients, the cause for NOA is not known and mutations in only a few genes were shown to be causative. AIM:We investigated the cause of maturation arrest in five azoospermic infertile men of a large consanguineous Bedouin family. METHODS AND RESULTS:Using whole genome genotyping and exome sequencing we identified a 4 bp deletion frameshift mutation in TDRD9 as the causative mutation with a Lod of 3.42. We demonstrate that the mutation results in a frameshift as well as exon skipping. Immunofluorescent staining with anti-TDRD9 antibody directed towards the N terminus demonstrated the presence of the protein in testicular biopsies of patients with an intracellular distribution comparable to a control biopsy. The mutation does not cause female infertility. CONCLUSION:This is the first report of a recessive deleterious mutation in TDRD9 in humans. The clinical phenotype recapitulates that observed in the Tdrd9 knockout mice where this gene was demonstrated to participate in long interspersed element-1 retrotransposon silencing. If this function is preserved in human, our data underscore the importance of maintaining DNA stability in the human male germ line.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读