例如:"lncRNA", "apoptosis", "WRKY"

Human Epicardial Fat Expresses Glucagon-Like Peptide 1 and 2 Receptors Genes.

Horm. Metab. Res.2017 Aug;49(8):625-630. doi:10.1055/s-0043-109563. Epub 2017 May 17
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Epicardial adipose tissue (EAT) is an easily measurable visceral fat of the heart with unique anatomy, functionality, and transcriptome. EAT can serve as a therapeutic target for pharmaceutical agents targeting the fat. Glucagon-like peptide-1 (GLP-1) and GLP-2 analogues are newer drugs showing beneficial cardiovascular and metabolic effects. Whether EAT expresses GLP- 1 and 2 receptors (GLP-1R and GLP-2R) is unknown. RNA-seq analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to evaluate the presence of GLP-1R and GLP-2R in EAT and subcutaneous fat (SAT) obtained from 8 subjects with coronary artery disease and type 2 diabetes mellitus undergoing elective cardiac surgery. Immunofluorescence was also performed on EAT and SAT samples using Mab3f52 against GLP-1R. Our RNA-sequencing (RNA-seq) analysis showed that EAT expresses both GLP-1R and GLP-2R genes. qRT-PCR analysis confirmed that GLP-1R expression was low but detected by 2 different sets of intron-spanning primers. GLP-2R expression was detected in all patients and was found to be 5-fold higher than GLP-1R. The combination of accurately spliced reads from RNA-seq and successful amplification using intron-spanning primers indicates that both GLP-1R and GLP-2R are expressed in EAT. Immunofluorescence clearly showed that GLP-1R is present and more abundant in EAT than SAT. This is the first time that human EAT is found to express both GLP-1R and GLP-2R genes. Pharmacologically targeting EAT may induce beneficial cardiovascular and metabolic effects.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读