例如:"lncRNA", "apoptosis", "WRKY"

Encephalomyocarditis virus 3C protease attenuates type I interferon production through disrupting the TANK-TBK1-IKKε-IRF3 complex.

Biochem J. 2017 Jun 09;474(12):2051-2065
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


TRAF family member-associated NF-κB activator (TANK) is a scaffold protein that assembles into the interferon (IFN) regulator factor 3 (IRF3)-phosphorylating TANK-binding kinase 1 (TBK1)-(IκB) kinase ε (IKKε) complex, where it is involved in regulating phosphorylation of the IRF3 and IFN production. However, the functions of TANK in encephalomyocarditis virus (EMCV) infection-induced type I IFN production are not fully understood. Here, we demonstrated that, instead of stimulating type I IFN production, the EMCV-HB10 strain infection potently inhibited Sendai virus- and polyI:C-induced IRF3 phosphorylation and type I IFN production in HEK293T cells. Mechanistically, EMCV 3C protease (EMCV 3C) cleaved TANK and disrupted the TANK-TBK1-IKKε-IRF3 complex, which resulted in the reduction in IRF3 phosphorylation and type I IFN production. Taken together, our findings demonstrate that EMCV adopts a novel strategy to evade host innate immune responses through cleavage of TANK. © 2017 The Author(s).

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读