例如:"lncRNA", "apoptosis", "WRKY"

MicroRNA-520b Functions as a Tumor Suppressor in Colorectal Cancer by Inhibiting Defective in Cullin Neddylation 1 Domain Containing 1 (DCUN1D1).

Oncol Res. 2018 May 07;26(4):593-604. doi:10.3727/096504017X14920318811712. Epub 2017 May 04
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


MicroRNAs (miRs), a class of small noncoding RNAs, are important regulators for gene expression through directly binding to the 3'-untranslated region (3'-UTR) of their target mRNA. Recently, downregulation of miR-520b has been observed in several common human cancers. However, the exact role of miR-520b in colorectal cancer (CRC) has not previously been studied. In this study, our data showed that miR-520b was significantly downregulated in CRC and cell lines when compared with adjacent normal tissues and a normal intestinal epithelial cell line. Low expression of miR-520b was notably associated with the malignant progress and a shorter survival time for CRC patients. Restoration of miR-520b inhibited cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in CRC cells. Defective in cullin neddylation 1 domain containing 1 (DCUN1D1) was then identified as a novel target gene of miR-520b in CRC cells. The expression of DCUN1D1 was significantly increased in CRC, with a negative correlation to miR-520b expression in CRC tissues. Moreover, a high expression of DCUN1D1 was significantly associated with the malignant progress and a poor prognosis for CRC patients. Furthermore, overexpression of DCUN1D1 rescued the miR-520b-mediated malignant phenotypes and EMT in CRC cells. The data demonstrate that miR-520b functions as a tumor suppressor in CRC through targeting DCUN1D1, suggesting that miR-520b may become a potential therapeutic target for the treatment of CRC.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读