[No authors listed]
phosphorylated GTP cyclohydrolase 1 (GCH1), and BH4 levels, with improved alveolar structure and angiogenesis in hyperoxia-exposed lungs. Reduced GCH1 levels in hyperoxia were due, in part, to increased degradation by the ubiquitin-proteasome system.ConclusionOur data support the notion that early caffeine treatment can protect immature lungs from hyperoxia-induced damage by improving eNOS activity through increased BH4 bioavailability.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |