例如:"lncRNA", "apoptosis", "WRKY"

Downregulation of microRNA-181d had suppressive effect on pancreatic cancer development through inverse regulation of KNAIN2.

Tumour Biol.2017 Apr;39(4):1010428317698364. doi:10.1177/1010428317698364
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


We explored the expression and function of miR-181d (microRNA-181d) in human pancreatic cancer. Quantitative real-time polymerase chain reaction was used to probe miR-181d expression in both pancreatic cancer cell lines and human pancreatic carcinoma. Pancreatic cancer cell lines, PANC-1 and AsPC-1 cells, were engineered to stably downregulate endogenous miR-181d through lentiviral transduction. The mechanistic effects of miR-181d downregulation on pancreatic cancer development were tested by proliferation, migration, fluorouracil chemosensitivity assays in vitro, and explant assay in vivo. Possible miR-181d downstream gene, NKAIN2 (Na+/K+ transporting ATPase interacting 2), was tested by dual-luciferase activity assay and quantitative real-time polymerase chain reaction. Functional involvement of NKAIN2 in miR-181d-regulated pancreatic cancer development was tested by small interfering RNA-mediated NKAIN2 knockdown in miR-181d-downregulated PANC-1 and AsPC-1 cells. MiR-181d was upregulated in both pancreatic cancer cell lines and human pancreatic carcinoma. Lentivirus-induced miR-181d downregulation decreased pancreatic cancer proliferation, migration, and fluorouracil resistance in vitro and inhibited the growth of cancer explant in vivo. NKAIN2 was directly targeted by miR-181d in pancreatic cancer. Small interfering RNA-mediated NKAIN2 knockdown reversed the inhibition of miR-181d downregulation on pancreatic cancer development. MiR-181d is aberrantly overexpressed in pancreatic cancer. Inhibiting miR-181d may suppress pancreatic cancer development, possibly through the inverse regulation on NKAIN2.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读