例如:"lncRNA", "apoptosis", "WRKY"

Megakaryocytes compensate for Kit insufficiency in murine arthritis.

J. Clin. Invest.2017 May 01;127(5):1714-1724. Epub 2017 Apr 04
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The growth factor receptor Kit is involved in hematopoietic and nonhematopoietic development. Mice bearing Kit defects lack mast cells; however, strains bearing different Kit alleles exhibit diverse phenotypes. Herein, we investigated factors underlying differential sensitivity to IgG-mediated arthritis in 2 mast cell-deficient murine lines: KitWsh/Wsh, which develops robust arthritis, and KitW/Wv, which does not. Reciprocal bone marrow transplantation between KitW/Wv and KitWsh/Wsh mice revealed that arthritis resistance reflects a hematopoietic defect in addition to mast cell deficiency. In KitW/Wv mice, restoration of susceptibility to IgG-mediated arthritis was neutrophil independent but required IL-1 and the platelet/megakaryocyte markers NF-E2 and glycoprotein VI. In KitW/Wv mice, platelets were present in numbers similar to those in WT animals and functionally intact, and transfer of WT platelets did not restore arthritis susceptibility. These data implicated a platelet-independent role for the megakaryocyte, a Kit-dependent lineage that is selectively deficient in KitW/Wv mice. Megakaryocytes secreted IL-1 directly and as a component of circulating microparticles, which activated synovial fibroblasts in an IL-1-dependent manner. Transfer of WT but not IL-1-deficient megakaryocytes restored arthritis susceptibility to KitW/Wv mice. These findings identify functional redundancy among Kit-dependent hematopoietic lineages and establish an unanticipated capacity of megakaryocytes to mediate IL-1-driven systemic inflammatory disease.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读