例如:"lncRNA", "apoptosis", "WRKY"

ACA, an inhibitor phospholipases A2 and transient receptor potential melastatin-2 channels, attenuates okadaic acid induced neurodegeneration in rats.

Life Sci.2017 May 01;176:10-20. Epub 2017 Mar 28
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


AIM:In recent studies, it has been shown that the Transient Receptor Potential Melastatin-2 Channels (TRPM2) and Phospholipases A2 (PLA2) inhibitors may have a protective effect on neurons. This study was aimed to investigate the protective effect of TRPM2 and PLA2 inhibitor N-(p-amylcinnamoyl) Anthranilic Acid (ACA) in a neurodegenerative model induced by Okadaic Acid (OKA). MAIN METHODS:OKA (200ng/10μl) was administered bilateral intracerebroventricularly as a single injection. KEY FINDINGS:OKA-treated rats showed significant impairments of spatial memory in Morris Water Maze Test. OKA-induced memory-impaired rats showed increased numbers of degenerated neurons and Caspase-3, tau phosphorylated ser396, β-amyloid positive cells in the hippocampus and cerebral cortex. Furthermore, OKA-treated rats exhibited significantly increased MDA, TNF-α levels, and decreased SOD, GSH-PX enzyme activates and GSH levels of the tissues. ACA administration ameliorated OKA-induced memory impairment in rats. The ACA treatment also increased SOD and GSH-PX enzyme activation and GSH levels, and conversely decreased the levels of MDA, TNF-α. It was found that the numbers of the degenerated neurons and Caspase-3 positive cells of cortex and hippocampus regions were significantly reduced. SIGNIFICANCE:ACA administration attenuates the oxidative stress and neuroinflammation of OKA-induced neurodegeneration; and ameliorates the cognitive decline and neurodegeneration.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读