例如:"lncRNA", "apoptosis", "WRKY"

The Bacterial Effector AvrB-Induced RIN4 Hyperphosphorylation Is Mediated by a Receptor-Like Cytoplasmic Kinase Complex in Arabidopsis.

Mol. Plant Microbe Interact.2017 Jun;30(6):502-512. doi:10.1094/MPMI-01-17-0017-R. Epub 2017 May 08
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Bacterial pathogen Pseudomonas syringae delivers diverse type III effectors into host cells to interfere with their immune responses. One of the effectors, AvrB, targets a host guardee protein RIN4 and induces RIN4 phosphorylation in Arabidopsis. Phosphorylated RIN4 activates the immune receptor RPM1 to mount defense. AvrB-induced RIN4 phosphorylation depends on RIPK, a receptor-like cytoplasmic kinase (RLCK). In this study, we found several other RLCKs that were also able to phosphorylate RIN4. We demonstrated that these RLCKs formed a complex with RIPK and were functionally redundant to RIPK. We also found that unphosphorylated RIN4 was epistatic to phosphorylated RIN4 in terms of RPM1 activation. AvrB-induced RLCK gene expression and phosphorylated RIN4-triggered RPM1 activation required RAR1, a central regulator in plant innate immunity. Our results unravel a mechanism in which plants employ multiple kinases to hyperphosphorylate the guardee protein RIN4 to ensure immune activation during pathogen invasion.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读