例如:"lncRNA", "apoptosis", "WRKY"

Reproductive toxicity of β-diketone antibiotic mixtures to zebrafish (Danio rerio).

Ecotoxicol. Environ. Saf.2017 Jul;141:160-170. Epub 2017 Mar 22
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


So far, few data are available on the reproductive toxicological assessment of β-diketone antibiotics (DKAs), a class of ubiquitous pseudo-persistent pollutant, in zebrafish (Danio rerio). Herein, we reported the reproductive effects of DKAs by means of transcriptome analysis (F1-zebrafish), changes in a series of reproductive indices (F0-zebrafish) and histopathological observations. A total of 1170, 983 and 1399 genes were found to be differentially expressed when compared control vs. 6.25mg/L, control vs. 12.5mg/L and 6.25 vs. 12.5mg/L DKA-exposure treatments, respectively. Among three comparison groups, 670, 569 and 821 genes were respectively assigned for GO analyses based on matches with sequences of known functions. In 149 KEGG-noted metabolic pathways, the preferential one was the MAPK (mitogen-activated protein kinase) signaling pathway, followed by oxidative phosphorylation, neuroactive ligand-receptor interaction and so on. By qPCR verification, 6 genes (c6ast4, igfbp1b, mrpl42, tnnc2, emc4 and ddit4) showed consistent gene expression with those identified by transcriptome sequencing. Due to DKA-exposure, the concentrations of plasma estradiol and testosterone, and the gonado-somatic index were significantly dose-dependently declined. Also, DKA-exposure led to declining in zebrafish reproductive capacity, reflecting in fertilization, hatchability and egg production. Histopathological observations demonstrated that zebrafish ovary and testis suffered serious damage after DKA-exposure. The 4-oxo-TEMP signals increased obviously with increasing DKA-exposed concentrations, implying disruption of balance between generation and clearance of (1)O2. In summary, DKAs not only produce reproductive toxicological effects on F0-zebrafish, but also result in adverse consequences for growth and development of F1-zebrafish.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读