[No authors listed]
OBJECTIVE:Angiogenesis is a key event in the progression of gliomas, and emerging evidence suggests that exosomes are signaling extracellular organelles that modulate the tumor microenvironment and promote angiogenesis and tumor progression. This study aimed to explore the mechanism by which glioma-derived exosomes affect angiogenesis. MATERIALS AND METHODS:qRT-PCR was used to determine the expression level of linc-POU3F3 in glioma tissue as well as glioma cell lines. Ultrafiltration combined with a purification method was used to isolate exosomes derived from A172 cells (A172-Exo) and linc-POU3F3 shRNA-treated A172 cells (shA172-Exo). Transmission electron microscopy, Western blot and tunable resistive pulse sensing (TRPS) were used to identify exosomes. In vitro migration, proliferation, and tube formation experiments, as well as in vivo CAM assays, were used to analyze the pro-angiogenesis ability of exosomes. qRT-PCR and Western blot were used to identify expression levels of angiogenesis-related genes and proteins in human brain microvascular endothelial cells (HBMECs) after being cultured with exosomes. RESULTS:The levels of linc-POU3F3 were upregulated in glioma tissue and significantly correlated with the advanced tumor stage. A172 cells exhibited the highest expression level. A172-Exo was similar to shA172-Exo (50-100 nm in diameter) and expressed Alix, Tsg101 and CD9, while the expression level of linc-POU3F3 in A172-Exo was significantly higher than that in shA172-Exo. HBMECs rapidly internalized A172-Exo and shA172-Exo, and the linc-POU3F3 expression level in HBMECs treated with A172-Exo was significantly higher than the level in HBMECs treated with shA172-Exo. A172-Exo exhibited better function in promoting HBMECs migration, proliferation, tubular-like structure formation in vitro and arteriole formation in vivo. The gene and protein expression level of bFGF, bFGFR, VEGFA, and Angio in HBMECs treated with A172-Exo was much higher than that of HBMECs treated with shA172-Exo. CONCLUSIONS:These results indicated that gliomas can induce angiogenesis by secreting exosomes enriched in linc-POU3F3. Exosomes and lncRNA-POU3F3 may, therefore, function as a putative therapeutic target in glioma.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |