例如:"lncRNA", "apoptosis", "WRKY"

Apoptosis inhibitor 5 is an endogenous inhibitor of caspase-2.

EMBO Rep. 2017 May;18(5):733-744. Epub 2017 Mar 23
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Caspases are key enzymes responsible for mediating apoptotic cell death. Across species, caspase-2 is the most conserved caspase and stands out due to unique features. Apart from cell death, caspase-2 also regulates autophagy, genomic stability and ageing. Caspase-2 requires dimerization for its activation which is primarily accomplished by recruitment to high molecular weight protein complexes in cells. Here, we demonstrate that apoptosis inhibitor 5 (API5/AAC11) is an endogenous and direct inhibitor of caspase-2. API5 protein directly binds to the caspase recruitment domain (CARD) of caspase-2 and impedes dimerization and activation of caspase-2. Interestingly, recombinant API5 directly inhibits full length but not processed caspase-2. Depletion of endogenous API5 leads to an increase in caspase-2 dimerization and activation. Consistently, loss of API5 sensitizes cells to caspase-2-dependent apoptotic cell death. These results establish API5/AAC-11 as a direct inhibitor of caspase-2 and shed further light onto mechanisms driving the activation of this poorly understood caspase.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读