[No authors listed]
Lon protease previously has been shown to interact with DNA, but the role of this interaction for Lon proteolytic activity has not been characterized. In this study, we used truncated Escherichia coli Lon constructs, bioinformatics analysis, and site-directed mutagenesis to identify Lon domains and residues crucial for Lon binding with DNA and effects on Lon proteolytic activity. We found that deletion of Lon's ATPase domain abrogated interactions with DNA. Substitution of positively charged amino acids in this domain in full-length Lon with residues conferring a net negative charge disrupted binding of Lon to DNA. These changes also affected the degradation of nucleic acid-binding protein substrates of Lon, intracellular localization of Lon, and cell morphology. In vivo tests revealed that Lon-DNA interactions are essential for Lon activity in cell division control. In summary, we demonstrate that the ability of Lon to bind DNA is determined by its ATPase domain, that this binding is required for processing protein substrates in nucleoprotein complexes, and that Lon may help regulate DNA replication in response to growth conditions.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |