例如:"lncRNA", "apoptosis", "WRKY"

Complex chromosomal rearrangements by single catastrophic pathogenesis in NUT midline carcinoma.

Ann. Oncol.2017 Apr 01;28(4):890-897
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Background:Nuclear protein in testis (NUT) midline carcinoma (NMC) is a rare aggressive malignancy often occurring in the tissues of midline anatomical structures. Except for the pathognomonic BRD3/4-NUT rearrangement, the comprehensive landscape of genomic alterations in NMCs has been unexplored. Patients and methods:We investigated three NMC cases, including two newly diagnosed NMC patients in Seoul National University Hospital, and a previously reported cell line (Ty-82). Whole-genome and transcriptome sequencing were carried out for these cases, and findings were validated by multiplex fluorescence in situ hybridization and using individual fluorescence probes. Results:Here, we present the first integrative analysis of whole-genome sequencing, transcriptome sequencing and cytogenetic characterization of NUT midline carcinomas. By whole-genome sequencing, we identified a remarkably similar pattern of highly complex genomic rearrangements (previously denominated as chromoplexy) involving the BRD3/4-NUT oncogenic rearrangements in two newly diagnosed NMC cases. Transcriptome sequencing revealed that these complex rearrangements were transcribed as very simple BRD3/4-NUT fusion transcripts. In Ty-82 cells, we also identified a complex genomic rearrangement involving the BRD4-NUT rearrangement underlying the simple t(15;19) karyotype. Careful inspections of rearrangement breakpoints indicated that these rearrangements were likely attributable to single catastrophic events. Although the NMC genomes had >3000 somatic point mutations, canonical oncogenes or tumor suppressor genes were rarely affected, indicating that they were largely passenger events. Mutational signature analysis showed predominant molecular clock-like signatures in all three cases (accounting for 54%-75% of all base substitutions), suggesting that NMCs may arise from actively proliferating normal cells. Conclusion:Taken together, our findings suggest that a single catastrophic event in proliferating normal cells could be sufficient for neoplastic transformation into NMCs.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读